MOV
Micro Technology Unlimited

K-1008-8 KEYWORD GRAPHICS PACKAGE

FOR COMMODORE PET AND CBM COMPUTERS

COPYRIGHT NOTICE
Micro Technology Unlimited, 1980

This product is copyrighted. This includes the program cassette or disk-
ette, program source 1listings, verbal description, and specification sheets. The
customer may only make BACKUP copies of the software routines to protect against
loss or erasure. This copyright notice must be added to and remain intact on all
such backup copies. This product may not be reproduced for use with systems sold
or rented.

Copies may not be made for multiple internal use. In the event of the need
for multiple copies to be used by the customer within his or her own company or
organization, volume discounts are available. In the case of large anticipated
volume, licenses and royalties may be negotiated for the reproduction of the pack-
age.

Micro Technology Unlimited

2806 Hillsborough Street

P.0. Box 12106

Raleigh, North Carolina 27605 USA
(919) 833-1458

TABLE OF CONTENTS

IITLE PAGE
1. Overview = = = = = = = = = = - = = T T T T T 1
2. Loading the Keyword Graphics Package = 3
3. Running the Demonstration Programs - - = = = = = = = = o et e o e R 7
4. Fundamental Graphics COMMANAS = = = = = = = = = = = = = = = - i e 12
5. Advanced Graphics Commands - = = = = = = = = = i i Sl T e] 16
6. User Defined Characters and FigUres « = = = = = = - = - o = = = = = = = = = 22
7. Additional Usage INformation = = = = = = = = = @ =« = = ¢ = = = = = = = = = 29

a.ErrorHessagea --------——--—-----------------—31

Do MOBORY MAD o o mom o o = e SRS BS e e e e . 32
10. Listing of KGPDEMO Demonstration Program = = = = = = = = = = = = = = = = = 33
11. Appendix A, Command SUMMArY = = = = = = = = = = = @ = = = = = c = = = = = = 36
12. Appendix B, Troubleshooting = = = = = = = = = = = = = = = = = = T

The Keyword Graphic Package was written be Martin J. Cohen, Ph.D. with assistance
from Ren Holt, Larry Iszacs, and Gregory Yob. This manual was prepared by Hal
Chamberlin and Larry Isaacs. We thank them all for a job well done!

OVERVIEW

The Keyword Graphics Package, or KGP for short, is a 6502 machine language
program that extends the command repertoire of PET BASIC to include over Ei graph-
ics commands for the Micro Technology Unlimited Visible Memory. Besides being much
easier to wuse and understand than previous software packages for the Visible
Memory, it is much faster since manipulation of the 64,000 picture elements in the
display is done at machine language speed.

For example, if a solid vector between the coordinates 35,21 and 1T, 7348
desired, the BASIC statement:

130 LINE 35,21,117,73
would be inserted inte the user's program (or by omitting the line number, the
vector would be drawn as soon as the command was typed in)., A caption located at
X=220 and Y=123 could be generated simply by coding:

710 MOVE 220,123

720 CHAR "MARKET INDEX"
In addition the package provide: some peowerful advanced function
other grapnics packages such as automatic coordinate transformaticn
lation and scaling), solid or dotted lines, Kkeeping track of up te U4 different
"display windows", subimage definition, and even a "scroll" command to facilitate
the programming of animated displays.

1,1 GRAPHIC DISPLAY CHARACTERISTICS

The MIU Visible Memory is the graphics display device used by this scftware
package. The display itself is very simple in concept consisting of 64,000 dots
arranged in a rectangular array 320 dots wide by 200 dots high. Each of these dots
may either be white (or green with the newer PET's), in which case it shows as a
small point of light; or black, in which case it does not show up. Graphic figures
are typically drawn by turning dots on to approximate the figure's outline which
means that the figure is white against a black background. A simple command is

provided for "drawing" black dots on a white background instead if the user prefers
that mode of display.

With the Visible Memory installed, there are actually two sources of video tha*
can be displayed on the PET screen. While programzing, the user will want to see
the normal PET character display. While runrning a graphics program, the Visible
Memory should be shown instead. While debugging, it is convenient to be able to
see both images superimposed (K-1008-6 Integrated Visible Memory only). Commands
are provided to rapidly switch between the two video sources with a minimum of
effort.

1.2 PLOTTING FEATURES

The most common use for graphics is plotting graphs and other images from math-
ematical functions or measured data. When the system is initialized, the origin of
the plotting grid (the 0,0 point) is set to the lower left corner of the screen. X
coordinates in the range of 0 through 319 and Y coordinates in the range of 0
are acceptable. For greater flexibility, a coordinate offset can be
which has the effect of moving the origin. Independent X and Y scale
21so be specified which will shrink or expand the image in either or

When plotting, a virtual grid having X and Y ranges of -32767 to +32767 is
actually available. If a figure larger than the visible limits of the screen is
being drawn, the visible part is still drawn correctly. Different parts of the

overall image may be seen by resetting the X and Y offsets and then redrawing the
entire image.

As an added convenience, storage and automatic handling of 4 display windows is
provided. This allows the implementation of split-screen and other multiple
display techniques with much of the housekeeping asscciated with switching among
windows to be done at machine language speed.

Two different kinds of subimage capability are built-in. Subimages are useful
for cases where shapes from a library of shapes are to appear in an image several
times at different locations. Examples include various types of schematic diagrams
and even ordinary text characters. The '"vector-byte" type of subimage features
ct storage of the shape definition (one byte per line segment) in exchange for

nEact
restricted shape size and line angles. A default ASCII character set encoded in
vector-byte forrm is a standard feature of the package. The T"relative coordinate
type of subimage allows shapes nearly as large as the screen with lines at any

ang.e tc be defined at the expense of doubled storage reguirements,

13 ANIMATION FEATURES

Wnile any type of microprocessor driver stored image display is limited in its
animation capability, two features of this package combine to provide animation
from EASIC nearly as good as dedicated machine language programming. One of these,
the vector-byte and relative coordinate subimage feature, means that entire images
can be redrawn in different locations at machine language speed merely by specify-
ing the new locecation of the subimage. The other is a "scroll" function whish will
nove entire portions of the screen from one location to another without the need to
erase and redraw them in the new location.

Tl HOW TO USE THIS MANUAL

The first part of this manual is devoted to getting the custcmer started in the
use of this package and the Visible Memory. Besides the Keyword Graphics Package
itself, the distribution cassette has two demonstration programs reccrded on it.
It is strongly suggested that at least the first demonstration be run to convince
yourself that the PET, Visible Memory, and Keyword Graphics Package are functioning
correctly. The demcnstration alsc gives an idea of the capabilities, appearance,
and speed that can be expected of the user's own graphics programming.

e user's manual itself is basically divided into two parts. The first part,
whizh 1s sections 4 and 5, is written as a tutorial which not only describes the
grapriics commands in detail but also teaches the reader many fundamental concepts
of computer graphies in general. It should be read carefully by customers
relatively inexperienced in graphics and at least skimmed by more experienced
customers. The second part, which is sections 6-10, can be referred to directly by
gxperienced users for concise descriptions of the commands and other system char-
acteristics. The entire manual is written assuming a good kKnowledge of PET BASIC.
If the reader is inexperienced with BASIC, the PET manuals should be studied in
conjunction with this manual. In addition, machine language concepts and terms
will Dbe used oceasionally. This should not be much of a problem for the inex-
perienced user as only the more advanced functions are involved,

ny

2. LOADING THE KEYWCORD GRAPHICS PACKAGE

The Keyword Graphics Package is a RAM resident program. Consequently, it must
be loaded from tape (or disk) every time the PET is turned on or the memory it
occupies is used for another purpose. After loading, it must be enabled to
activate the additional BASIC commands.

2:l HARDWARE REQUIREMENTS

The Keyword Graphics Package requires the fellowing hardware:

16K Verison 32K Version
1. PET or CBM computer with 2231 ROM's 1. PET or CBM com,uter with 2351 ROM's.
2. PET cassette to read program tape 2. PET cassette to read prograr tape
3. RAM memory from $0000 tn $3FFF (16K) 3. RAM memory from $0000 to $7FFF (32K
4. K-1007 and K-1008 Visible Memory or 4, K=1007 and K-1008 Visible Memory or
K-1008-& Integrated Visible Memory K-1008-6 Integrated Visible Memory
addressed at $4000, $£000, or $9000 addressed at $3000.
5. K-1007-2 (o0ld PET's) or K-1007-2 5. K-1007-2 (old PET's) or K=1207-3
(new PET's) connector board (new PET's) connector board
24K Veriscn
1. PET or CBM computer with 253‘ ROM's NOTE 1: Systems with new ROM's can
2. PET cassette to read progran tape be identified by cbserving
3. RAM memory from $0000 to $5FFF (24K) the display immediately
4. K-1007 and K-1008 Visible Memory or after power-on, If the
K-1008-6 Integrated Visible Memory first line reads:
addressed at $6000 or $3000 f#t# COMMCDORE BASIC #id
5. K-1007-2 (old PET's) or K-1007-3 then you have the new FOM's.
(new PET's) connector board
2.2 DISTRIBUTION CASSETTE CONTENTS

The following files are recorded on the program distribution cassette:

1. MIU KGP 16K 16X version of the Keyword Graphizs Package
2. MIU KGP 32K 32K version of the Keyword Graphics Package
3. MIU KGP 24K 24K version of the Keyword Graphics Package
4. KGP DEMO Generalized demonstration program

5. KGP EXDRAW An illustrative figure drawing program

ny
w)

LOADING INTO 16K PET'S

The following describes how to load the 16K version of the Keyword Graphics

Package. If you have a 24K or 32K PET and wish to use its greater memory capacity,
skip to the next section.

1. Turn the FET off, then on to insure that BASIC is properly initialized.

2. Tne Visible Merory should be connected to the PET and able to run the demon-
stration and disgnostic programs in the K-1007 or K-1008-6 manual.

(V8]

er the command: POKE 53,34 then a Carriage Return. This action reserves

Ty space for the Keyword Graphics Package.

Ent:
mem

4. Enter the command: NEW then a Carriage Return. This makes BASIC "digest" the
effects of the previous command.

un

. Place the K-1008-8 cassette in the recorder and make sure it is rewound. Then
enter the command: LOAD "MTU KGP 16K" and then a Carriage Return,

o

When BAZIC has found and lcaded the file it will print REALY. At this time,
enter tne comrand: NEW and then a Carriage Return. If this is the first tire
the package was loaded, see paragraph 2.7 for instructions on making a backup
copy of the file to protect against loss.

T. Enter the command: SYS3256%34 and then a Carriage Return which enables the
graphic command processor. If the Visible Memory is not addressed at $400C,
enter the command: VMPAGE $6 if it is at $6000 or VMPAGE 144 if it is at $3000.
The XGP is now ready to use., If desired, go to section 3 for instructions on
running the demonstration programs.

(8]
| —

LOADING INTO 32K PET'S

The following describes how to loa? the 32K version of the Keyword Graphics
Package. If you have a 24K PET or if your Visible Memory is not addressed at
$9000, please refer to the next section which describes loading into a 24K PET.

1. Turn the PET off, then on to insure that BASIC is properly initialized.
2. The Visible Memory should be connected to the PET and able to run the demon-
stration and disgnostic programs in the K-1007 or K-1008-% manual.

3. Enter the command: POKE 53,98 then a Carriage Return. This action reserves
memory space for the Keyword Graphics Package.

L, Enter the command: NEW then a Carriage Return. This makes BASIC "digest" the
effects of the previous command.

5. Place the K-1008-8 cassette in the recorder and make sure it is rewsund. Then
enter the command: LOAD "MTU KGP 32K" and then a Carriage Return.

€. Wnen BASIC has found and loaded the file it will print READY. At this time,
enter the command: NEW and then a Carriage Return. If this is the first time
the package was loaded, see paragraph 2.7 for instructions on making a backup
copy of the file to protect against loss.

er the command: 3YS256%98 and then a Carriage Return which enables
grapnic commznd processor. The KGP is now ready to use. If desired, go
section = for instructions on running the demonstiration programs.

th
.

O

&5 LOADINSG INTO 24K PET'S

|

The following describes how to load the 2LK version of the Keyword Graphics
Package. This version is for those who have expanded an 8K PET to 24K by the
addition of a 16K memory expansion. It is also for people with 32K PET's who have
elected to overlap the Visible Memory with the last BK of PET memory in order to

avoid changing the PET's internal addressing jumpers (see the K-1008-6 or K-1007
manuals),

1. Turn the PET off, then on to insure that BASIC is properly initialized.

2. The Visible Memory shculd be connected to the PET and able to run the demon-
stration and disgnostic programs in the K-1007 or K-1008-6 manual.

3. Enter the command: POKE 53,66 then a Carriage Return. This action reserves

memory space for the Keyword Graphies Package.

4. Enter the command: NEW then a Carriage Return. This makes BASIC "digest" the
effects of the previous command.

5. Place the K-100:-5 cassette in the recorder and make sure i is rewound. Then

6. When BASIC has found and loaded the file it will print READY. At <his time,
enter the command: NEW and then a2 Carriage Return. If this is the first time
the package was loaded, see paragraph 2.7 for instructions on making a backup
copy of the file to protect against loss.

7. Enter the command: SYS256%*c5 and then a Carriage Return which enables the
graphic command processor. If the Visible Memory is not addressed at $5000,
enter the command: VMFAGE 144 for Visible Memory at $300C and then a Carriage

Return. The KGP is now ready to use. If desired, go to section 3 for instruc-

tions on running the demonstration programs.

[9,]

2.6 USE WITH COMMODORE DOS SUPPORT AND OTHER COMMAND PROCESSORS

When enabled, the KGP inserts itself into BASIC and looks at all of the com-
mands entering the system before BASIC does. If a graphic command 1is recognized,
it is acted upon then discarded so that BASIC never sees it. This technique is not
unique however since Commodore DOS Support (alsc known as "the wedge") typically
used with the Commodore disk and other command enhancers (such as the Programmer's
Toolkit) also use it. To prevent conflicts and possible crashes, it is important
that the KGP be loaded and enzbled last in the sequence of bringing up the system.
The procedure to use with the disk wedge is as follows:

1. Follow steps 1-4 of the appropriate loading procedure described in
paragraphs 2.3, 2.4, or 2.5,

2. Load and enable DOS Support according to Commodore's instructions.
3. Complete the KGP loading instructions starting at step 5

4. Any other command interpreter should be loaded and enabled between steps 2 and
3 abeve. (Only the BASIC Programrer's Toclkit (tm) has actually been tested;
proper operation with others is not guaranteed,

2.7 MAKING A BACKUP COPY
In order to protect against wearout or loss of the K-1008-8 distributicn tape
and to optimize reading accuracy on the user's system, it is recommended that a
backup copy be mzade of the XGP the first time it is successfully loaded, After
copying, make sure the extra copyright notice label is sffixed to the copy t
te. To make a copy of the Keyword Graphics Package, do the following:
1. Follow steps 1-6 of the XGP loading procedure. Dc not enable it however.

2. Type the command: SYS1024 to enter the machine language monitor.

3. If a cassette backup is to be made and you have a 16X PET, enter thz following
command : .5 "MTU KGF 16K",01,2200, 4000 then start the tape in record mode.

4, If a cassette backup is to be made and you have a 32K PET, enter the following
command : .S "MTU KGF 32K",07,6200,8000 then start the tape in record mode.

5. If a cassette backup is tc be made and you have a 24K PET, enter the following
command: .S "MTU KGP 24K",01,4200,6000 then start the tape in record mode.

6. If a disk backup is to be made and you have a 16K PET, enter the following
command : .5 "0:MTU KGP 16K",08,2200,4000 backup on drive 0)

T. If a disk backup is to be made and you have a 32K PET, enter the following
command : .S "0:MTU KGP 32K",08,6200,8000 (backup on drive 0)

8. If a disk backup is to be made and you have a 24K PET, enter the following
command : .5 "D:MTU KGP 24K",08,4200,6000 (backup on drive 0)

9. Enter an X command followed by a Carriage Return to return to BASIC.

10. Copies of the demonstration program and EXDRAW may be made in the usual way
since they are entirely BASIC programs.

11, Affix the extra Copyright label supplied with the distribution tape *to th
backup copy.

]

)

RUNNING THE DEMONSTRATION PROGRAMS

Two demonstration programs have been included on the distribution cassette.
Their purpose is two-fold. First they allow the first time user to get the Visible
Mezmory to do "something useful" immediately after unpacking and installing it with
a minimum of effort. Second, the 1listings of the demonstration programs serve as
examples of how to use the Keyword Graphics Package to perform a variety of graph-
ics functions. While not every possible command or graphic technique 1is exploited
in the demo programs, an effort was made to include as many as possible. In the
descriptions, specific KCP commands are sometimes referred to. Consult sections 4
and 5 for detailed description of these and other commands.

3.1 LOADING KGPDEMO
To load and run the generalized Keyword Graphics Demonstration, do the
following:

7. Load and enable the Keyword Graphics Package as described in sections 2.3, 2.4,
or 2.5.

2. Enter the command: LOAD "KGPDEMO" , stzrt tha tape in read mode, and wait for

PET BASIC to print READY.

3. Enter the command: RUN which should switch to Visible Memory videc and then
start the sequence of demonstrations.

3.2 DESCRIPTION OF KGPDEMO

The first program illustrates point plotting by drawing a circle (depending on
adjustment of the PET's display monitor, it probably will not be perfectly round)
with 250 individual dets. The paramet:ic equations: X=COS(A) and Y=SIN(A) are used
to generate X,Y pairs as a function of the variable, A, which varies from zero to
2%Pi. The MOVE command is used to put the "cursor" at the desired X,Y position
while the WRPIX command actually plots the point. Note that offsetting and scaling
of X and Y, which vary between -1 and +1, is necessary to produce the aprropriate X
and Y values for plotting. KGP can alsc be instructed to do the offsetting and
scaling (with restrictions) automatically if desired.

The second program illustrates vector plotting by creating a 31 point star.
Since the string of lines is connected, the DRAW command can be used to draw from
the current cursor position to the next endpoint. However the first endpoint 1is a
special case. To handle the first point, a variable called FP is initially set to
1. As each new endpoint is computed, the value of FP is interrogated. If it is
found to be non-zero (which will only occur for the first point), a MOVE 1is done
instead tc position the cursor without drawing. After the first point is plotted,
FP is set to zerc thus allowing vectors to be drawn between all successive points.

The 31 point star is actually drawn 4 times in different graphics modes (GMODE)
to illustrate their effect. It is first drawn in mode 1 which gives normal line
plotting. Next it is "drawn" in mode 2 which is actually an erase mode since it
draws black lines. Note that when two lines cross and one of them is erased that a
szall gap is left in the other line. This is a fundamental problem of all stored
image (as opposed to refresn vector) graphic displays. ne last twc times the star
is drawn in mode C which is "flip mode™. In flip mode, the state of each point
tted 1s made the opposite of what it already is. Thus on a black background it
duces lines as in mode 1, However when lines cross, the point of intersection
is flipped twice resulting in a gap. Note that drawing the star the fourth time in
e 0 erases it (f. wnite back to black) but that erasing "repairs" the gaps at
his I1s a very powerful property of flip mode which will be

£t
o
@ ¢

The third program illustrated how a fully labelled and captioned graph can be
produced. First the Y axis labels are produced with a FOR loop, number conversion
intoc a string variable, and the CHAR command to print the labels in the desired
positions along the Y axis. Note that if the FOR lcop had been written: FOR Y=-1
to 1 STEP .2 that after 10 iterations Y would not be precisely 0 because of round-
off error in decimal fraction to binary floating point conversion. Thus rather
than O being printed, something like =1.16415322E-10 would be printed instead. The
captions are printed next by positioning the cursor with MOVE commands and then
printing text with the CHAR command. Then the axes themszlves are plotted with
calibration marks for the Y axis. Finally the Fourier synthesis of the sound wave-
form of a particular organ pipe is plotted.

The fourth program illustrates the capability of KCP to keep track of and
display multiple windows of text and graphics. Four windows of varying size and
osition are set up on the screen. Three of the windows act as miniature scrolling
text displays and simply display a continuous stream of characters. The fourth
window displays a portion of a somewhat larger graphic image. The prograr to
gererate this display services each window in round-rcbbin fashion but the KGP

takes care of saving and restoring the "state" of each window while another is
being serviced.

The last program illustrates advanced graphics functions and rudimentary ani-
mation, First the screen is filled with a checkerboard pattern. Use of the SCFLI?
command is used to generate the white squares at high speed. Next a single letter
n¥" is set roaming about the screen. Hitting numbers 1 tnrough 9 on the the PET's
numeric keypad will change the direction that the X wanders. Hitting "C" on the
keypad stops the program. Basically the program works by drawing the character
twice in "flip" mode which will cause it to first appear and then disappear. The
cursor coordinates are then updated acceording to the wander direction and the char-
acter is drawn and erased again. Since machine language in the KGP draws the in-
dividual lines making up the character, the entire process is performed fast enough
to give an illusion of continuous motion.

(¥8)
L8

2:2 LOADING EXDRAW

KGPEXDRAW is a simple interactive drawing program that can be used to draw any
kind of figure on the screen. Its 1is not really a complete drawing application
however since there are no provisions for storage and later reczll of the image.
Nevertheless, the code illustrates some of the techniques that would be inveclved in
a real drafting application. To load and run the progranm dc the fellowing:

1. Load and enable the Keyword Graphics Package as described in sections 2.3, 2.4,
or 2.5. (Simply type NEW if KGPDEMO has been run).

2. Enter the command: LOAD "KGPEXDRAW", start the tape in read mcde, and wait for
PET BASIC to print READY.

3. Enter the command: RUN which should switch to Visible Memory video, clear the
screen, and display a menu of commands at the top of the screen.

3.4 OPERATING EXDRAW

EXDRAW is a program designed to illustrate some of the capabilities of the MIU
Visible Memory. EXDRAW enables its user to draw and manipulate simple drawings on
the VM screen. Although it is small ensugh to fit in a 16K PET along with the Key-
word Graphics Package, EXDRAW can dc the following:

1. Use a blinking graphics cursor to indicate any point on the VM screen. The
cursor can be moved in any direction and the distance of the move can be set
from 1 to 512 points. In addition, the cursor can be moved te the closest
already existing point, wherever it might be.

2. Draw a line between any two points.

3. Connect any point with any already existing point.

4. Move any point on the VM screen to any other position - when this is done, all
of the lines connecting to the point are automatically moved as well,

5. Delete any point - when this is decne, all lines connecting to the point are
automatically erased.

6. Delete any line.
7. Redrawing the screen - tnis can be done either solidly or in flip mode.

8. The contents of the data base desori ing the current drawing can be displavyed
at any time.

Bt Moving The Cursor

All drawing 1is done using a grapnics curscr. This cursor appears on the VM
screen as a blinking crosshair, and is moved by using the numeric keys (1-§). The
cursor can be moved by itself whenever the message:

ENTER COMMAND: . LPDERS V : % 1-

(¥e]

is displayed at the top of the VM screazn,

The direction of the move is the direction of the numeric key from the central
S5-key. For example, pressing 5 moves the cursor to the right, and pressing 1 moves
the cursor down and to the left, The distance the cursor mcves is initially set to
8 pixels (a pixel is a picture element, or point on the VM screen), but can be
changed by pressing the "." key and then pressing a digit from O to 3. If the
value of the digit is N, the length that the cursor will henceforth move is 2
raised to the N power. Thus if & 0 is pressed following the ".", the cursor will
move one pixel with each move, while if a 6 was pressed, the cursor will move 6L
pixels each move,

There are two special move control keys. If the HOME-CLR key is pressed, the
cursor moves to the center of the screen (this is alsc the initial position of the
cursor). Of the "®#" key os pressed, the cursor moves to the nearest point which
has already been defined. This last feature is often very useful when constructing
drawings in which many lines are to end at the same point. All that needs to be
done when drawing a line (deseribed in the next section) is to move the endpoint
near the desired point. When "*" is pressed, the endpoint of the line will then be
at the nearest point.

3:8.2 Drawing A Line

All lines drawn by EXDRAW (except for the "S" command described later) are
drawn using the flip mode. That is, whenever a line crosses a point, the state of
the point is reversed. Thus, if the point was off, it is turned on, and if the
peint was on, it is ‘turned off. This method of drawing has the extremely nic
feature that a line can be erased simply by drawing it again, and all the points
crossed by the line will be restored to their original condition.

To draw a line, press "L". The line drawn will start wherever the cursor is.
Move the cursor as described in section 2. The current position of the 1line will
always be shown on the screen. This gives the effect of a so-called "rubber=band"
line. To end the line, either press "RETURN" or enter another command which will
be executed. This command can be another "L" which will cause another line to be
drawn starting where the previocus line ended. It is possible to change the length
that the cursor moves with the "." command while drawing a line.

Note that to connect twe already existing points, you can use the "#" key to
move the cursor to the first point, press "L" to begin the lirne, move the cursor
near the s2cond point, press "#" to move the endpoint to the second point, and then
press "RETURN" to finish the line.

3.4.3 Moving A Point

To move a point, press "P". The cursor will then be moved to the nearest
point, and the message: MOVE A POINT will be displayed. You can then move the
point by moving the cursor as described in section 3.4.1., Whenever the point
moves, all lines which end at the point are automatically redrawn to reflect the
new position of the point, To stop moving the point, either press
press any cther oommand key, which will then be executed. Note tha* if !
moved tc upon pressing "F" is not the one yYou want to mcve, by pressing "RETURN
you can then mcve the cursor to the correct point without moving the point in
rectly selected.

3.4.4 Deleting A Point

Tc delete any point, move the cursor near the pecint and press "D". T
will be moved to the point nearest it and the message: "PRESS Y TO DELE
OTHER NCT TO" will be displayed. If the cursor is at the correct peint, p
The point will then be deletegd along with all lines ending at the point, The
screen wWill then be redrawn te show the modified drawing. If the cursor is not at
the correct point, press any key other than "y", EXDRAW will then enter cursor
moving mode without deleting the point.

cursor
o S

Fdini,

he
TR
TE
gt

ss "yn
¥

3.4.5 Deleting A Line

To delete any line, move the curscr near the line and press "E", The line
nearest the cursor (perpendicular distance) will be redrawn as a dotted lire (it
takes several seconds to search the list of lines to find the closest one) and the
message: "PRESS ¥ TO DELETE POINT, OTHER NOT TO" will be displayed. If the correct
line is dotted, press "Y". The doctted line will be deleted, If the correct line
is not dotted, press any key other than "Y" and the line will be made solid again.
EXDRAW will then enter cursor moving mode.

3.4.6 Redrawing the Screen

The screen carn be redrawn by pressing either M"R" or "S", If "R" is pressed,
the screen is cleared and the image is redrawn in flip mode., If "3" is pressed,
the screen is cleared and the image redrawn sclidly, that is, points common to two
or more lines are turnmed on rather than flipped. This drawing mode is useful when
you want to see how the drawing really looks without the missing points caused by
intersecting lines. Note that when altering an image, it should be drawn in flip
mode while when considering a "final" version of the image the drawing should be
done in solid mode.

Fall. T Displaying the List of Points

In the course of deleting lines and points, it is possible to have a point in
the data base with no lines connecting to it thus wasting storage space. The "V"
command can be used to plot all of the points in the data base as single points on

the screen. If a lone point is seen, it may be deleted with the "D" command
described in section 3.4.4.

3.4.6 Displaying the Image Data Base

To display the numeric values representing the drawing, press ":". The
following information will then be displayed on the PET's standard video display:

1. The current position of the cursor as: X1 Y1 =

2. Two internally used variables and the current move length as: IP NI MF -
3. The number of points defined as: POINTS: NP -

4. The data points themselves preceeded by their index

5. The number of lines as: LINES: NL -

6. The lines themselves as defined by the indices of their endpoints

At the end of the listing will be the message: PRESS ANY KEY FOR GRAPEICS. When
any key is pressed, the Visible Memory display returns.

L FUNDAMENTAL GRAPHICS COMMANDS

Because of the large number of commands in the KGP and their wide range of
sophistication, they will be described in two groups; fundamental commands, and
advanced ccmmands. In addition, they will be described in their probable order of
need rather than grouped by function. The appendix has a long and short formo
summary of the commands grouped by function.

=
.

FUNDAMENTAL SETUP COMMANDS
Before executing plotting functions in your program, it is necessary to switch
to the Visible Memory display and set the operating mode of the KGP. In many cases
defaults are provided to simplify usage.

L.1.1 Video Selection Commands

The VISMEM command is used to switch to Visible Memory display sc tha®t the
graphic image may be seen. The PETMEM command is used to restore the normal PET
character display. One problem with software switching of the display is that an
error in a graphics program (or pressing the STOP Key to interrupt program execut-
icn) will wusually leave the Visible Memory image on the sereen. Thus the PETMEM
compand will nave to be entered to see the PET display and error message. The
PETMEM command can also be abbreviated as lf_whish is useful for rapidly switching
to PET video in such cases.

Two other commands are provided for K-1008-6 Integrated Visible Memory usars,
The PVMEM command will cause both the Visible Memory and the PET display to be
shown together. This is wuseful while debugging complex graphics programs., The
NOMEM command will completely blank the screen (i.e., neither video source is
selected). Note that neither the PET video "screen" nor the Visible Memcry is
erased, the display is merely turned off. This is useful for blanking the screen
while an image is being drawn "behind the curtain". These two commands will not
work with the K-1007/K-1008 combination; they would simply select Visible Memory
video or PET video respectively.

4.1.2 Display Mode Commands

Three commands are provided for selecting either a black background with white
plotting or a white background with ©black plotting. The NRMDSP ccmmand selects a
black background which is considered "normal® for CRT dispalys. The RVSDSP command
selects a white background. FLPDSP changes to the opposite background color.
Typically the background color is specified once at the beginning of the program
and then left alone. If it is changed in the middle of the program, the new back-
ground color will only apply to subsequent plotting commands; it will not change
the background color of what is already on the sereen, Thus one would normally
clear the screen following a background color change. The default is a normal
display (black background) which is easier on the eyes and on the PET's picture
tube.

L.1.3 Screen Clearing Commands

Two high speed screen clear commands are provided. A simple CLEAR will set the
entire Visible Memory screen to the current background color in about 1/10 of a
second. SCEEil can be used to clear rectangular portions of the screen if desired.
“eollowing the SCLEAR command should be four numbers (or BASIC variables) which

efine the X and Y coordinates of the upper left and lower right corner of the
rectangle to be cleared.

The order of the arguments 1s Xui,Yul ,Xlr,Ylr. The X coordinates are expected
to be in the range of 0 to 31§ and the Y coordinates are expected tc be between 0
and 199. If either Y has a fractional part, it will be truncated to an integer. X
is a bit more cemplicated however. The first X, which defines the left edge of the
cleared area, is reluced by the KGP until it 43 divisible by 8, The second X,
which defines the right edge, I{s increased until it is one less than a value divis-
ible by 8. Thuz if the X coordinates were 66 {left) ard 163 (right), the 66 would
be reduced to 64 ({the clcsest lower value divisible by &) and the 163 would be
increased to 167 (one less than 168 which i3 divisible by 8). This aztion will be
referred to as "rounding to a multiple of 8" in the description of other commands
tnat act this way. To avoid wnexpected results it 13 a good idea to alweys make
the left X coordinate a multiple of 8 and the right X coordinate always 1 less <han
a oultiple of 5 in commands that do such rounding.

4.1.4 Pletting Mode Commands

Even with only two colors pcssible on the screen, there are three ways that
pcints, 1lines, and characters can be plotted. The command GMODE followed by a
single integer or variable selects one of these three modes. Mode 1 is wuse? for
mest normal plotting. In mode 1, all plotted points are set to the opposite color
of the backgrowuid. Thus fer a black background, white pcints, lines, and charac-
ters are pictted. In mode 2, all plotted psints are the sams color as the back-
ground, i1.e., nothing shows up. However if an image previously plotted in mode 1
is replotted in mode 2, it is erased. The replctting must be exact for the erasure
to be complete.
Mode 0 is a special case. In mode 0, the pecints plotted are made the opposite

of their previous color rather than opposite the background color. The effect is
the same as mode 1 if an isolated point or 1line is drawn on an unblemished back-
ground. However if a line crosses a previously plotted line, their peint of inter-
section will rever: back to the backgrcund color. If two identical lines are drawn
in mode 0, the sezcond 1line will effectively cancel out the first one and leave
nothing but the bazkground! The drawings below illustrate the effect of different

drawing modes on a figure: |

A Bl

A

Figure A was drawn in mode 1 which gives a "perfect™ imzge within the display's
resclution limitations. Figure B shows the figure A image after two of the lines
have been erased by drawing them in mode 2. Note the gaps where previous lines had
crossecd the remaining line. Figure C shows the same 3 lines drawn in mode 0. The
gaps wh»re the lines crca3s are due to the "flipping"™ action of mode 0O, D however
reveals thot when twe 1lines are erased by redrawing them in mode O that the gaps
have be.n "repaired" leaving a perfect remaining line! Thus mode U 1s most useful

where extensive editing of an image 1is expezted. The default mode is O.

13

4.2 PLOTTING COMMANDS

The KGP is capable of directly plotting points and drawing straight lines. The
location of the points and lines on the screen are defined by X and Y coordinates.
X has a legal range of 0 to 319 inclusive and Y has a range of 0 to 196 inclusive.
If mixed numbers are given for coordinates, they are truncated before use (same
effect as the BASIC INT function). The handling of out of range coordinates is
described in the individual commands.

L.2.1 Positioning the Drawing Cursor

In many of the plottins commands the location of a "drawing cursor" is impor-
tant. Tne MOVE command followed by X,Y coordinates is used to set the position of

this cursor. The drawing cursor is simply a pair of numbers kept internally to the
KGP, no real cursor shows up on the VM screen. Coordinates in the range of -32787
to +32767 are acceptable to the MOVE command. If they are outside of that range,

an "ILLEGAL QUANTITY" error will occu
L.2.2 Plotting Points

n + the current location of the drawing cursor, simply enter the
command, WwRPIX. The command name is mermonic for "wRite PIXel". The actual effect
of writing the pixel is dependent on the current background color (see sect.
4,1.2) and the current graphics mode (see sect. L.1.4). With a normal black back-
ground and the graphics mode set to 1, WRPIX will unconditionally plot a white
point. If the drawing cursor specifies a point lccation outside the 0-319,0-199
screen area, poeint plotting is skippe

-

L.2.3 Plotting Lines

Two commands are provided for plotting lines between points. The LINE command
will plot a line between any pair of endpoints without having to set the drawin
curser first. The format of the command is: LINE Xq,Y;,X3,Yp where X1,Y7 defines
the 1locatien of the initial endpoint, and Xp,Yz defines the final endpcint. Note
that when the command is com;;e-ed, the drawing cursor will be set to Xp,¥p. If
part of the line is outside of the 0-313,0-19G screen area, only the visible part
will be plotted. Note that the invisible part still requires plotting time even
though no plotting is dene. Thus a command like LINE -10000,-10000, 1OOJ4,10033
will require a few seconds to plot even though only 200 of the 20000 pecints are
actually visible.

The DRAW command works somewhat differently, It is followed by a single pair
of coordinates, X2,Yp, and will draw a line from the drawing cursor positicn to the
X2,Yp point. When the drawing is complete, the drawing cursor is repositioned at
the Xp,Yp point. This command is useful for drawing figures made of end-to-end
connected lines. It is particularly useful for graphs where the plotted points are
to be connected by straight lines for improved appearance. Again, only the visible
portion of the line will be plotted.

4.3 CHARACTER DRAWING COMMANDS

The commands discussed up to this peint are sufficient for plotting any kind of
graphic image. However it is often desirable to caption and label the image with
text characters. Only the simplest form of character plotting will be discussed
here, i.e., normal character size and left-to-right reading. The standard charac-
ter set contains definitions for all of the upper and lower case letters, the
digits, and standard ASCII special characters. It does not have the PET graphics
characters. The shapes of most of the characters are slightly different from the
corresponding PET video characters since they are drawn in a 5 dot by 7 dot matrix
rather than a 7 dot by 7 dot matrix, This allows one to draw as many as 53 charac-
ters on a line with equal or even superior readibility.

The CHAR command is used for displaying short pieces (one line or less) of
text. It may be followed by a single numerical argument or variable in which case
it will interpret the number as an ASCII code and draw the corresponding single
character. The character is located such that the leftmost point of its baseline
coincides with the current drawing cursor position. The character extends 7
coordinate units above the baseline and 5 units to the right of the X cursor
position. Note that lower case characters with descenders (g,j,p,q,y) draw up to
three units below their baselines. After the character is drawn, the X coordinate
of the drawing cursor is incremented by £ in preparation for another character.
Thus the statement: CHAR 64 will plot =z capital A at the cursor position and then
increment the cursor position by 6 in the +X direction.

CHAR may also be followed by a BASIC string variatle in which case the entire
string will be printed. Movement from one character to the next is as described
above. When the string has been drawn, the drawing cursor is positioned to the
next available character space. One may also use multiple arguments with the CHAR
command. Each argument is separated from the preceeding one by a semicolon (;)
just as in BASIC print statements. {(The comma (,) separator for tabbing ¢ the
next field is not available.) You may also mix numeric arguments and string
variable arguments. Note that if the line of text becomes too long, it will simply
run off the screen and the excess characters will nct be seen.

Characters are actually drawn with line segments rather than by moving a 5x10
dot matrix into the display area. This means that the characters are plotted
according to the same rules as lines with respect to the background coler and the
plotting mode. In particular, drawing a2 new character on top of an old one will
not erase the old character, instead the two characters will be superimposed. This
also applies to the space (code 32) character which in effect simply moves the
cursor without erasing. The old character must be erased first by drawing it again
with the graphics mode set to 2 or O. Alternatively, a delete (code 20) may be
printed which will erase the character cell (including descender) but it will be
relatively slow. Note that the delete code does not move the cursor. A text type-
in and display program therefore should detect blanks and replace them with a
delete-blank segquence.

5. ADVANCED GRAPHICS COMMANDS

while the previously discussed commands are sufficient for most any kind of
graphics appliecation, many additional commands and modes are available to simplify
the more complex applications. These were not discussed in the previous section to
avoid confusing first time users.

5.1 SCALING AND OFFSETS

In most plotting applications the X and Y coordinates will not “naturally" be
in the 0-319,0-199 range of tne display. Of course the user program c¢an always
transform whatever coordinate representation is desired into the proper range but
then plotting is slowed substantially by the additional BASIC language programzing.
To alleviate this, the KGP has the ability to transform all of the coordinates it
receives at machine language speed.

Bl ul Offset Command
Normally the origin of the coordinate system for plotting (i.e., the 0,0 point)
is at the lower left corner of the screer., By using the offset command, the origin
may be set anywhere desired. QFFSET followed by two numbers or variables separated
d a

by a comma will establish a value that will be added to all X coordinates an
value that will be added tc all Y coordinates before they are used. Thus if the
statement: OFFSET 160,100 is executed (and offsetting is enabled, see below), then
the origin of the coordinate syster will be at the center of the Visible Memor)
screen. Offsets may be anything in the range of -32787 to +327¢7 however any frac-
tional part is truncated off. The default offsets are 0,0. Note that the drawing
cursor position will become undefined immeciately after execution of the CFF3ET
command ,

5els2 Scaling Command

In addition to moving the origin, it is useful to be able to shrink or expand

the image, that is, scale it. For maximum speed and to simplify the machine lang-
uage coding in the KGP, scaling can be only by positive or negative powers of 2.
In fact the scaling command expects the actual power of 2 to be specified rather
than a multiplying factor, Thus for scaling up by a factor of B (i.e., coordinates
are multiplied by 8), the scaling parameter would be 3 since 23:8. For scaling
down, the scaling parameter would be negative; to shrink by a factor of 8, =3 would
be specified since 2-3=1/8, Tne SCALE command is wused to establish the X and ¥
scale factors as a pair of scale factors separated by a comma following the
command. As an example, the statement: 130 SCALE 2,-1 will expand the image Dy a
factor of 4 in the X dimension and shrink the image by a factor of 2 in the Y
dimension. The default value for both scale factors is 0 which gives no scaling
(20=1). Note that the drawing cursor position will become undefined immediately

after execution of the SCALE command.

when studying the effect of combined scaling and offsetting, it is important to
realize that scaling is done before offsetting. In addition, all arithmetic is
integer arithmetic. Thus the equations that are actually evaluated by the KGP when
coordinate transformation is enabled are as follows:

Xdrawn=INT(Xoffset)+INT(INT(Xspecified)*2TINT(Xscale))

YdrawnzINT(Yoffset)+INT({INT(Yspecified)®#2tINT(Yscale))

o

5.1.3 Enabling Coordinate Transformation

After setting the offset and scaling parameters, it is necessary to enable
coordinate transformaticn. The command XFFLG followed by a single number estab-
lishes the transformation mode. Mode U i3 no transformation and is the default.
Mode 1 enables transformation. Note that transformation only applies to subsequent
drawing; the current content of the screen is not transformed. Alsc note that the

drawing cursor position becomes undefined when the coordinate transformation mode
is changed.

5.1.4 Character Scaling and Rotation

Characters can also be scaled and rotated independently cf graphic scaling.
The CHSCALE command followed by a single number sets the scale factor for charac-
ters. The scaling parameter is interpreted in the same way as the graphiecs scaling
parameter, that is, it is an integer power of 2. Generally only positive values
are useful since sco much of the detail of the character will be lost when negative
values are used that text beccmes unreadable. The autcmatic cursor movement
associated with the CHAR command is also affected by the character scale factor so
that proper character and line spzacing is maintained. The default character scale
parameter is 0 which gives normal sized characters.

Characters may also be rotated in G0 degree increments by use of the CERQT ccm-
mand. The single following argument must be in the range of 0 to 3. The amount of
counter=-clockwise rotation is ejuzl to 90 degrees times the rotation parameter.
Note that CHAR will upcate the curscr position correctly for rotations other than
0. The default rotation parameter is 0 which gives normal upright, right-reading
characters.

Note that character scaling and rctation is always in effect, it need not be
enabled before use.

wn
o

DISPLAY WINDOWS AND BOUNDARY CHECKING

The KGP has the capability of maintaining up to 4 independent "viewing windows"
which is useful for implementing "split screen™ functions in application programs.
Again, appropriate BASIC programming could perfecrm the same function but the KGP is
able to switch among the windows much faster; fast enough in fact to give the
illusion of simultaneous action ir each window.

A "window" is really nothing more than a set of 6 numbers stored in memcry.
Associated with each window is its current boundaries (4 numbers) and the position
of its drawing cursor (2 numbers). When a different window is selected as the
"current window", these 6 numbers are saved in the old window's memory and the 6
numbers for the new window are made current., Thus a user program can freely switch
amcnig the 4 windows without having to save or restore any data. (Note however that
character scaling and rotation parameters are glcbal and not saved with the win-
dows.)

B i1 Window Definition

When the GP is first loaded and enabled, all 4 windows are initialized with
boundaries set to the screen boundaries (0,0,319,199) and the cursor position unde-
fined. In addition, window 0 is selected for use. The WINDOW command followed by
a single argument is used to select a window and make it current. Data about the
previcusly selected window is saved. The argument must be in the range of 0 to 3
since memory space for only 4 windows is available.

Window boundaries may be set with the SETWIN command. SETWIN is followed by 5
numbers which specify the window number (0 to 3), the left boundary, the bottom
boundary, the right boundary, and the top boundary respectively. Necte that the
boundary values are with respect to the untransformed screen coordinates, i.e., the
left and right boundaries must be between 0 and 319 and the bottom and top bound-
aries must be between 0 and 139. If the specified boundaries are out of range or
scrambled up, they will be forced to something that makes sense but the final
result will be unpredictable. Note that if SETWIN refers to the currently active
window that the new boundaries will become the current boundaries. This allows
software simulation of more than U4 windows if needed. Setting the boundaries of a
window makes the cursor position for that window undefined.

Some operations on windows will "round" the lef: and right boundary values to a
multiple of 8 as described in section 4.1.3. Thus it is a good idea to always
specify a left boundary that 1is a multiple of 8 and a right boundary that is one
less than a multiple of 8.

Ui
[
ny

Boundary Checking

As a default, the KGP checks the coordinates of every point plotted against the
boundaries of the current window before actually plotting. If the point would be
outside the boundaries, the point is not plotted. Tris applies tc points plotted
by the WRPIX command, the line drawing commands, and the character drawing
commands. Obviously this constant checking slows down plotting substantially even
though it is done in machine language. Flotting speed may be increased by giving
the NOCHK command tc turn off boundary checking. The BNDCHK command restores
boundary checking.

When boundary checking is turned coff, points, lines, and characters being plot-
ted are not specifically checked against the window boundaries, They are checked
sufficiently so that memory addresses cutside of the visible area of the Visible
Memory are not written into, thus protecting memory. The actual visible effect cf
plotting cutside of the screen area when boundary checking is off is unpredictable.

N
(VY]

CURSOR DISPLAY COMMANDS

Although a cursor is used internally to define the location of points, line
endpeints, and characters, it does not show up on the screen. For interactive
graphics programs, it is useful to have a display of the current cursor position.
The GRACSR command can be used to display a crosshair cursor at the current drawing
curscr position. The cursor is always drawn in "flip" mode so that it will show up
regarcdless of the type of image, if any, it covers. Sutsegquent movment of the
drawing cursor will not cause the displayed cursor to move however. Instead, the
visible cursor must first be erased by executing the GRACSR command again with the
old curscor coordinates, updating the drawing curscr coordinates, and then issuing
another GRACSR to display the crosshairs at the new location.

For text entry applications, an underline cursor is probably preferred to point
to where the next character will appear. The TEXCSR command will display an under=-
line cursor at the drawing cursor position. Actually, the Y coordinate of the
cursor will be one less than the cursor position. The left end of the underline is
equal to the X coordinate of the cursor while the length to the right is 5 units
times the current character scale factor. Like the crosshair graphic cursor, the
KGP does not automatically update the displayed cursor. Thus before a character is
actually displayed, the cursor should be erased by displaying it again (it is
always drawn in flip mode), the character drawn which will move the drawing cursor,
and then the new cursor position displayed with the TEXCSR command.

During debugging or simulating more than 4 windows, it may be helpful to be
able to read what the current drawing cursor position is. The RDCSR command fol-
lowed by two variable names will read the X and Y coordinates of the cursor
position into these variables. Thus the statement: 235 RDCSR EX,WY will set the
value of EX to the X coordinate of the cursor and set WY to the Y coordinate of the
cursor, Note that the values returned have already been transformed if transform-
ation is enabled.

u
&=

ADVANCED TEXT DISPLAY FUNCTIONS

While the CHAR command is useful for printing short labels and captions on
figures, it is awkward to wuse when multiple 1lines of formatted text are to be
displayed. The AUTEXT command is similar to CHAR except that it handles end-cf-
line and end-of-page conditions just 1like the PET's own character display. Thus
after plotting a character and moving the drawing cursor, a check is mzde to deter-
mine if the next character will go beyond the current right boundary. If so, the X
coordinate of the cursor is set to the left boundary (plus 2 units for spacing) and
the Y coordinate is decremented by 10 sco that a new line of text is started., If
when Y was decremented it comes within 3 wunits cf the bottom boundary, the entire
content of the current window, text, graphics and all, is moved up 10 coordinate
units instead, that 1is, scrolled. These actions effectively make the Visible
Memory intoc a scrolling text display with a screen capacity of 20 lines of 53
characters each. If the current character scale factor is other than zero, the
numerical values listed abecve are suitably altered.

Besides the normal printable characters, both CHAR and AUTEXT recognize and

interpret a number of special control characters. These along with their functien
are listed below:

PET KEY ASCII CODE DEFINITION

DEL 20 Erase the character at the current character position.
(does not move the cursor)

Up-arrow 145 Move cursor up one text line.

Lown-arrow 17 Move cursor down one text line.

Right-arrow 29 Mcve cursor right one character position.

Left-arrow 157 Move cursor left one character position.

Shift-1 = 177= Move one dot position in direction the digit is frox 5 on
Shift-9 185 the PET numeric keypad.

PET KEY ASCII CODE DEFINITICN

Shift=D 196 Add one to CHSCALE, i.e. double the character size.
Shift-E 197 Subtract one from CHSCALE, i.e. halve the character size.
Shift-F 198 Add one to CHROT, i.e, rotate 90 degrees counterclockwise
Shift-G _ 199 Subtract one from CHROT, i.e. rotate 90 degrees clockwise
Shift-@ 192 Try it!

Shifs-$ 164 Draw the contents of BASIC's string variable GR$ as a

character definition. The definition contained in GR$
MUST end in a zero byte! Used for debugging user charac-
ter shape definitions. See section 6.

CLR 147 AUTEXT only. Clears the current window and then sets the
cursor for the next character to be in the wupper leflt
corner of the window.

At

HOME 19 AUTEXT only. Positions cursor as in CLR but does not
clear the window.

RETUEN 13 AUTEXT only. Sets the cursor to the left boundary and
moves down one text line (or scrolls up if necessary).

5.5 MISCELLANEOUS ADVANCED COMMANDS
Numerous additional commands are provided that are useful for special funct-
ions, debugging, etc. The commands used for defining custom character sets are not

included here, they are described in section 6.

Bub sl Readback Commands

Commands are provided for reading the current state of several KGP parameters.
These comrands are most useful for debugging. RDGM followed by a single varizble
name will read the current graphics mode, either 0, 1, cr 2, (see section L,1.&)
intc the variable. RDPIX followed by a variable name will read the state of the
Visible Memory bit under the cursor into the variable. The value returned will be
0 if the point is black, 1 if it is white, or 255 if it is outside the boundaries.
This command in conjunction with the WRPIX command can be used to turn the Visible
Memory into a 64,000 bit memory with individual bit addressing for special applica-
tions.

5:5.2 Dotted Line Command

In scme cases it may be desirable to make the lines connecting endpoints dotted
rather than solid. The DOTL command can be used to accomplish this easily. DCTL
is followed by two arguments separated by commas. The first argument specifies the
number of coordinate units the line is toc be "on" (the dash lengtn) while the
second argument specifies the number of coordinate units the line is to bte off (the
space length). If the second argument 1is zero, solid lines are produced. The
default of course is solid lines. Lines making up characters are always solid.

20

5.5.3 Area Plotting Commands

Three commands are provided for rapid area plotting functions. WCLEAR will
clear the area defined by the current window's boundaries to the background color.
In addition, it moves the drawing cursor to a position appropriate for plotting a
character in the upper left corner of the window. Also if boundary checking had
been turned off previously with the NOCHK command, 1t will be turned back on. Note
that the left and right boundaries are "rounded to a multiple of 8" for clearing
purposes (see section 4.1.3),

SCFLIP is used to "flip" the state of all of the display dots in a specified
area of tne screen. Thus white dots become black and vice-versa. Fcllowing the
SCFLIP command should be four numbers (or BASIC variables) which define the X and Y
coordinates of the upper 1left and lower right corner of the rectangle to be
cleared. The order of the arguments is Xul,Yul,Xlr,Ylr. The X coordinates are
expected to be in the range of 0 to 319 and the Y coordinates are expected to be
between 0 and 199. If either Y has a fractional part, it will be truncated to an
integer, The X values will be "rounded to a multiple of 8" (see section 4.1.3)

The most powerful area command is SCROLL which can be used to move entire areas
of the screen from one position on the secreen to another. The entire comrand
format is: SCROLL Xt,Yt,Xul,Yul,Xlr,Ylr where each of the 6 arcuments may be either
numbers or variables. The basic function 1is to move the rectangle defined by
Xul,Yul,Xlr,Ylr (upper left and lower right corner coordinates) to an area of the
same size whose upper left corner is at Xt,Yt. Please note that the three X
cocrdinates are "rounded to a multiple of &" (see section 4.71.3). The move is
destructive, that 1is, the source rectangle is set to the backgrcund color as its
content is moved to the destinaticn rectangle. The scurce and destination rect-
angles can alsc overlap in any manner desired and SCROLL will still WOrk as
expected. Xt and Yt may specify part {or all) of the image to be moved off the
screen and it will function as expected.

55t Miscellaneous KGP Control Commands

The VMPAGE command estzblishes the address of the Visible Memory graphics
device. The single argument should be the memory page number of the first byte in
the VM. Normally, this command would be executed immediately after lcading the KGP
if the VM was in a non-standard location. However it can also be useful in custom
systems with two or more VM's tc switch from one "image plane" to another.

The GKILL command is used to disassociate KGP from BASIC. It must be execu
if KGP is no longer needed and the user wishes to use the memory occupied by
for other purposes.

ted
KG?P

The =zost frequently used commands have a short abbreviated name (see section
7.1) in addition to their completely spelled out name. KGP can be set into a meode
where only the abbreviated form is recognized by executing the GRSHAT command. The
advantage of the abbreviated only mode is that searching for command names is
faster thus any BASIC coding in the program will run abeut 25% faster under the
abbreviated name mode. The li command will restore full name mode. If the execu-
tion of a particular non-graphic routine dominates the run time of a program (such
as a Fourier analysis subroutine), one can simply code a GRSHRT command at the
beginning of the routine and a]X command at the end to speed up that particular
routine without having to sacrifice readability of other pecrtions of the program.

I(‘]‘\

USER DEFINED CHARACTERS AND FIGURES

The Keyword Graphics Package has the ability to store up to 255 predefined
"shapes™ each of which may be recalled by giving its "ID" and drawn anywhere on the
screen (according to the drawing cursor) at machine language speed, In fact the
"characters" available through the CHAR and AUTEXT commands are nothing more than
94 of these stored shapes where the numeric value of each ASCII character addresses
the appropriate stored shape. The advantages of using the shape table facility of
the KGP to draw repetitive shapes are:

1. Compact storage of the shape data - as little as 1 byte per line segment.

2. All shape coordinates are relative meaning that the same shape can be drawn
anywhere on the screen by specifying the location of the first point.

3. Intricate shapes are drawn at machine language speed, typically 10 to 100 time
faster than doing the same thing in BASIC.

(7]

Normally, building up definitions for the stored shapes would be a complex pro-
cess involving use of the machine language monitor but in the KGP several addition-
al BASIC commands have been provided so that shape tables can be defined and
redefined by a BASIC program.

5.1 SHAPE TABLE STRUCTURE

In order to understand how the shape table building commands are used, it is
first necessary to become familiar with how the shape table itself is stored in
mexmory. A shape table entry consists of a string of bytes beginning wi%!
and ending with a zero byte as illustrated below:

65,166,132,230,51,65,132,1,99,0

ID byte Terminal O

In most cases there will be many different shape entries in the shape tz2ble, each
one following the previous one as shown below:

65,166,132,230,51,65,132,1,99,0,203,177,193,209,241,129,145,0,201,165,15,140,...

Shape # 65 Shape # 203 Shape # 201

Since zero is not a legal drawing instruction byte in the shape table entry, it is
easy to separate the entries simply by looking for zero instructisn bytes.

When a shape is actually being drawn, the shape interpreter routine built inte
the KGP (i.e., the routine that executes CHAR and AUTEXT commands) receives the ID
of the shape to be drawn and then "searches" the shape table for the matching ID.
Whern a match is found, the drawing instruction bytes are interpreted one-by-one
until the zero byte is found which terminates the shape. The drawing instructicn
bytes are described in section 6.2, If no match is found, ncthing is drawn.

In reality it would be very slow even in machine language to search through
hundreds of bytes of shape table entries looking for the requested ID. In order teo
speed up the search process, a seperate shape location table is used. The shagpe
location table consists of 256 pointers each of which points to a shape table
entry. Since each pointer is two bytes 1long, the shape location table 1is always
512 bytes long. Now when a CHAR or AUTEXT command wants to draw a shape, it simply
goes directly to the IDth entry in the shape location table and then follows the
pointer directly to the first instruction byte in the corresponding shape tatle
entry. If an ID is requested for which there 1is no corresponding shape tatle
entry, the pointer in the shape location table will be zero and no drawing will ze
performed.

N
no

The diagram to the right shows a SHAPE LOCATION SHAPE TABLE

.shape table with only three simple shapes TABLE Address Content
defined and the corresponding shape loca-
tion table. Using this as an example, 28773 (28764 2
let's assume that a CHAR 2 command was 28765 28765 35
executed. KGP would look into the 2nd 28778 2B766 132
entry in the shape location table and 0 28767 50
find a pointer to address 28765. At 0 28768 228
28765 is the first drawing instruction s 28769 97
byte for a simple "+" shape. (Note that . 28770 4
the ID byte for the shape is still in the . 28771 0
shape table. This is "left over" from 28772 1
building the shape locatiocn table and is 28773 35
not used in shape drawing.) Each instruec- >| 28774 132
tion byte would be executed in turn to 28775 99
draw the "+" until the zero byte was L28776 0
encountered. At this point the CHAR 28777 3
command would be complete and execution 28778 17
f the user's BASIC program would contin- 28779 148
ue with the next line. If a CHAR 5 was 28780 68
executed, KGP would look at the 5th entry 28781 2Ly
in tne shape location table and find that 28782 97
the pointer was zero. Since a zero 28783 2
pointer means that no shape 1is defined LgB?SU 0

for that ID, ncthing is drawn and the
CHAR command would be complete.

€£.2 SHAPE INSTRUCTION BYTES

The shape instruction bytes tell the shape table interpreter how to draw the
shape. The drawing cursor, which specifies the location of the shape, is used and
updated in all shape drawing.

6.2.1 Vector Byte Instruction

For small, relatively simple shapes such as characters, vector byte instruc-
tions are the most efficient. Within a single byte one can generate a line segment
or perform a move without drawing in any of B directions a distance from 0 to 14
coordinate wunits. The drawing below illustrates how to compute the vector byte
value given the direction, the segment length, and whether a draw or move without
draw is desired.

DIRECTION NUMBER LENGTH NUMBER MOVE/LDRAW NUMBER
48 32 16 Specifies length of Is zero for move.
move or draw. This Is 128 for draw.
number may be from
64 0 0 to 14,
\j

The vector byte is simply the sum of the three numbers calculated above. Note that

a meove of zero distance to the right will be interpreted as an end-cf-shape
instruction.

As an example of how to code a3 shape definition using vector bytes let's try to
code the shape c=finition for a squared-off letter "A". The first byte in the
shape definition should be the ID number we wish to have refer to the "A"™. A
logical choice would be the ASCII code for upper case A which is 65 in decimal,

23

Before trying to calculate the vector byte values, it is a gocd idea to draw
out the shape on graph paper first as is done below:
|

L. ik | l SEGMENT DIRECTION LENGTH MOVE/DRAW SUM

IR Al 1 32 6 128 66

; | 3 2 0 4 128 132

. 6 - | 3 96 6 128 230

—4 - 4 u8 3 0 51

R —i- 5 64 1 0 65

I : 8, 6 0 L 128 132

Initial | ., { Final 7 0 i 0 1
Cursor_» ['A_T'Cursor 8 96 3 0 L]
Position Position End 0 0 0 0

Note that an arrow is drawn over each line segment to indicate the direction of
drawing and then each segment is given a number in order to avoid confusior. Next
the direction number, length number, and move/draw numbter is computed for each seg-

ment. The actual sequence of vector bytes is the sum of the three numbers for each
segment Following the vector byte for the last segment is a zerc byte to mark the
end of the definition.

Note that a pair of moves is performed after the shape itself is drawn so that
the cursor will be in position for the following character. If shapes are bein
defined for purposes other than text display, it probably will not matter where the
cursor is left after drawing the shape. As an exercise, see if you can code the
shape with fewer than 8 segments while maintaining the same final cursor position.

6.2.2 Relative Move and Draw Instruction Bytes

For larger shapes or shapes in which segments at odd angles are needed, rela-
tive mcve and relative draw instructions are available., Each of these are 3 bytes
long. The first byte 4is 2 223 for relative draw or 239 for relative move. The
second byte is the X distance for the move/draw and the third byte is the Y
distance. To allow moving or drawing in either direction, the number coied is the
sum of the actual distance desired (within a range of -128 to +127) anz 128. Thus
if the cursor is to be mecved 27 units to the left and 33 units upward, the entire
instruction would be: 239,101,161 where the 239 is the relative move instruction
ccde, the 1071 is 12B-27, and the 161 is 128433,

Note that a shape table entry can be any mixture of vector byte instructions
and relative move/draw instructions that may be appropriate. The example below
shows how one might define a logic gate symbol with such a combination:

I
T ~=--VECTOR BYTE---- -RELATIVE M/D-
SEG DIR LGTH M/D SUM INs X b
7 3z 5 328 16
2 223 140 123
3 223 116 123
y 32 5 128 165
| 5 o 12 0 12
e | P 6 16 1 128 1us
= I ; 7 o} 1128 129
q = S : g8 112 1128 241
. A SRS | g 80 1 128 209
! g B v il 10 6l 1 128 193
| I 11 LB 1 128 177
Initial Final 12 0 z 128 130
Cursor Cursor
Position Fositicon

6:2.3 Additional Instruction Byte Codes

Several additional instructions are recognized in a shape definition. Perhaps
the most useful is the 47 instruction which allows the definition of another shape
.to be used as part of this shape definition. This 1is somewhat like a "graphics
ubroutine” and is most useful for shapes that have two or more identically shaped
‘appendages". Following the 47 instruction byte is the ID of the shape that 1s to
be used as a "subshape". When using subshapes, the cursor position at the end of a
subshape is crucial since the remainder of the "main" shape is influenced by it. A
good convention te follow when defining shapes that will be used as subshapes is to
make the final cursor position the same as the initial curscr position. Subshapes
may be nested, that is, a subshape definition may itself call upon another subshape
(which makes it a sub-subshape) ad infinitum. (The maximum nesting depth is deter-
mined by the length of the 6502 microprecessor's stack. A 1limit of & levels is
reasonatle.) The example shape definition below shows how subshapes can be wused to
shorten the definition of a logic OR-not gate symbol:

MAIN SHAPE DEFINITION

Seg Vector Byte Rel move/draw Subshape
! i Sum Ins X Y Ins ID
1 47 203
2 162
3 223 127 131
4 47 203
5 223 127 130
= 6 136
7 223 13z 127
8 223 131 127
g 223 130 1127
16 241
11 223 130 125
12 223 126 125
13 209
14 223 125 127
15 223 125 127
16 223 12L 1127
117 200
18 223 129 130
15 47 293
INVERSION BUBBLE DEFINITION 0 223 131 129
21 162
203,177,193,209,241,129,145,0 22 239 146 128

A similar instruction is the ég instruection. Following the 63 is a string of
shape ID's terminated by a zero ID. This is most wuseful in saving space when
defining a shape that 1is actually a sequence of shapes (such as the letters of a
company lego). Don't forget the zero instruction byte to terminate the definition;
the zerc ID only terminates the 63 instruction.

Two instructions make it possible for a shape definition to change the charac-
ter (shape) scaling and rotation parameters. The 95 instruction will cause the
next byte to be picked up, 128 subtracted from 4it, and the result added to the
~urrent character rotation parameter. The 175 instruction will cause the next byte
.0 be picked up, 128 subtracted from it, and the result added to the current char-
acter scale parameter. There are probably very few practical uses for these
commands but they are available,

The last two instructions are wuseful for debugging shape definitions of for
maintaining "floating definitions" that are never really integrated into the KGF.
The 79 instruction will cause the contents of a BASIC string variable to be used as
a subshape definition. The two bytes following the 79 should be the PET ASCII code
of the string variadble's name. Remember that the subshape definition in the string
variable must end with a zero byte. The 191 instruction is similar except that the
actual memory address of the subshape definition (low byte first) follows the 191,

6.3 STORING SHAPE TABLE ENTRIES IN MEMORY

Now that we know what the byte values are for defining a shape, it is necessary
to get them stored in a form that the KGP can use. In most cases the user will
wish to add to the shape definitions already built into KGP so that the character
plotting functions remain available. There are 298 bytes unused in the predefined
KGP shape table that can be used for user shape definitions. This is enough for
several dozen simple shapes or all of the examples given so far.

Three steps are necessary to add a shape definition to the shape table. The
first step is to execute a CHINIT command followed by the number you wish to use as
the ID of the new shape. The ID must be between 1 and 255 inclusive and should be
an ID that is not already assigned to a character shape (if it is, that character
shape will be effectively redefined). Currently wnused ID's are: 1-10, 12, 14-1¢,
18, 21-28, 30-31, 124, 126-14L4, 146, 148-156, 158-163, 165-170, 172-175, 186-151
200-239, 2L3-255. The second step is to enter a loop in which each byte in the
shape definition is given as the argument of a CHDFC command. Thus if the shape
requires 20 bytes (i.e., all vector bytes, relative move/draws, other instruction
bytes, and the final zerc) then the CHDFC command must be executed 20 times, once
for each byte. The last step is to get the new definition added to the shape
pointer table. This is accomplished by exscuting a CHBLD command which requires no
arguments. Additional shapes may be added by following the preceeding three steps
for each shape to be added.

As an example, lets add each of the U4 example shapes that have besn discussed
tc the shape table. The BASIC program segment below will accomplish this:

100 DATA 166,132,230,51,65,132,1,99,0: REM FUNNY A
110 DATA 165,223,140,123,223,116,123,165: REM LOGIC INVERTER

111 DATA 12,145,129,241,209,193,177

112 DATA 120,0

120 DATA 47,203,162,223,127,131,47,203: REM OR-NOT GATE
121 DATA 223,127,130,136,223.132,127

122 DATA 223,131,127,223,130,127,241

123 DATA 223,130,125,223,126, 125,209

124 DATA 223,126,127,223,125,127,223

125 DATA 124,127,200,223,129,130,47

126 DATA 203,223,129,131,162,239,146

127 DATA 128,0

130 DATA 1/7,193,209,241,129,145,0: REM INVERSION BUBBLE
200 CHINIT 200: REM DEFINE THE FUNNY A

210 FOR I=1 TC 9: READ A: CHDFC A: NEXT I

220 CHBELD

300 CHINIT 201: REM DEFINE THE LOGIC INVERTER

310 FOR I=1 TO 17: READ A: CHDFC A: NEXT I

320 CHBLD

LOO CHINIT 202: REM DEFINE THE OR-NOT GATE

L10 FOR I=1 TO 52: READ A: CHDFC A: NEXT I

420 CHBLD

500 CHINIT 203: REM DEFINE THE BUBBLE FOR THE OR-NCT GAT
510 FOR I=1 TO 7: READ A: CHDFC A: NEXT I

520 CHBLD

&3]

26

The following program segment will then use these definitions as part of a graphic
.image:

1000 CLEAR: VISMEM: GMODE 1: REM SETUP FOR DRAWING

1010 CHSCALE 1: REM DRAW LOGIC GATES TWICE NORMAL SIZE

1020 LINE 0,124,10,124: CHAR 201: DRAW 56,124: DRAW 56,154: DRAW 72,154
1030 LINE 56,199,56,174: DRAW 72,174

1040 LINE 0,164,10,164: CHAR 201: DRAW 74,164

1050 CHAR 202: DRAW 136,164: DRAW 136,140

1100 CHSCALE O: REM DRAW LETTERS AT SMALLEST READABLE SIZE

1110 FOR I=156 TO 176 STEP 10

1120 MOVE 60,I: CHAR 200

1130 NEXT I

When debugging shape definitions it is important to realize that every time a
definition is added to the shape table that an internal memory pointer is updated.
Thus if a definition is added, checked, found to be in error, changed, and then
added again, the old definition remains in memory taking up space. After enough
iterations all of the memory available for shape table additions will be wused up
and error messages will begin to appear. To overcome this problem, the SYS 256%#34,
SYS 256%66, or SYS 256%98 used to initialize KGP should be done again to reset the
interial pointer and thus write over all of the previcus user specifiec definit-
ions.

6.3.1 Adding Shape Table Entries In the User's Own Memory

For some applications, the 298 bytes available in KGP memory will not be
sufficient to hold all of the needed extra shape table entries. In this case it is
pessitle to "steal" additional memcry from BASIC to hold the definitions. The
procedure belcw can be used to reserve the needed extra memory and then add def-
initions in that memory.

1. First execute the follcwing statement to find the current top of memory:
TB=PEEK(52)+PEEK(53)#256,

2. Next, compute what the new top of memory should be to reserve N bytes of memory
for shape definitions. To do this, execute the following statememt, replacing
"N" with the number bytes you wish tc reserve: NT=TB-N-3 The extra 3 bytes spec=-
ified is due to the fact that the CHDFC function writes three zero bytes in the
shape table after each execution. Since the internal memory poeinter isn't
updated when these zero bytes are written, they will be overwritten if future
CHDFC and CHINIT commands are executed. This is done to guarantee termination
of your shape definition should you forget to include necessary zero bytes in
the definition. This only guarantees termination of the definition, the shape
will still not draw correctly if zero bytes are missing. The 238 bytes avail-
able in the KGP memory includes a subtraction for these three zero bytes,

3. Next, execute the following command to reserve the desired area of memory:
POKE 53,INT(NT/256):POKE 52,NT-PEEK(53):NEW

4. Now, you tell the KGP that you wish to store future shape definitions in this
reserved memory area by executing the command: CHDLOC NT

5. You may now add shape definitions in the same manner as in the previous section.
6. If you remexler the value for TB above, you may determine the amcunt of memory

you have left for shape definitions by executing the following statement:
RDDLOC CL :PRINT TB-CL-3

27

6.4 SAVING KGP WITH NEW SHAPE DEFINITIONS INCLUDED

If 2 set of shape definitions are to be used with several different application
programs or if memory space is tight, it 1is desirable to define the shapes once,
and then save KGP along with the new definitions on tape. Then whenever KGP is
reloaded, the definitions are already in place and the application program will not
have to define them.

To add shape definitions so that they become part of the standard set, execute
a CSETUP command, which rebuilds the standard set of definitions. You may then add
your definitions in the usual way. The reason the added definitions will become
part of the standard set is due to the fact that the CSETUP and CHBLD commands will
build a pointer in the shape pointer table for as many definitions as they find
stored sequentially in memory. They will stop building when a zero byte is found
as the shape ID and leave the internal memory pointer pointing to this byte. After
executing CSETUP, adding definitions will overwrite the zero byte which initially
terzinates the CSETUP. Your added definitions then become part of the standard
set. Thanks to the CHDFC command there will be three zerc bytes in the shape table
at the end of your added definitions (see step 4 in Section 6.3.1) to terminate
future CSETUP commands. To save the KGP with your added definitions included,
simply follow the same procedure you used to make a backup copy of the KGP distri-
bution tape (see section 2.6). When you later use this copy, your added cefini-
tions will be automatically installed because the SYS command to initialize the KGF
will execute a CSETUP itself. It is important to note that at this point, there is
no simple way to remove the added definitions from the standard set.

To add some definitions to be kept seperate from the standard set you should
execute CSETUP:CHINIT O before adding the definitions. The CHINIT O will preserve
the zerc byte which terminates the CSETUP's building process. The added defini-
tions will then be separate from the standard set. The SYS command to initialize
the GF will also preserve this zero byte by incrementing the internal memory

pointer after it executes a CSETUP. If the definitions were entered one right
after the another, they can be considered to be a second set of definitions. Tc
save this second set with the KGP, use the backup procedure as before. When thi

this
copy of the KGP is later used, executing the statememt CSETUP:CHINIT O0:CHBLD is

required to install the second set.

In the above cases you are again limited to the 307 byte of unused space in the
KGF memory. 1If you require more memory than this, you can store the set of defini-
tions somewhere else in memory. To do this, execute steps 1,2, and 3 of the pro-
cedure given in Section 6.3.1. Next execute CHDLOC NT :CHEINIT 0, and then add your
definitions. Now save the KGP starting from the beginning of your added set tc the
end of KGP. When this copy of the KGP is later used, execute CHDLOC NT: CHINIT O:
CHBLD to build in the added set. The CHINIT 0O 1is needed in this case because the
CHELD will give an error if a CHINIT has not been executed since the last CSETUP or
CHBLD.

If you have added a second set of definitions, it's possible to have only those
definitions built into the shape pointer table. Simply execute the statement
CSETUP: CHRESET: CHINIT 0: CHBLD, or CHDLOC NT: CHRESET: CHINIT O: CHBLD depending
on where the second set is located. The CHRESET commanc will clear the shape
pointer table by storing zeros in all the pointers.

I. ADDITIONAL USAGE INFORMATION

In this section will be found additional hints, usage information, and obscure
commands of use to advanced programmers.

it HINTS FOR IMPROVING SPEED

The average user of the Keyword Graphics Package will quickly realize that the
generally slcw speed of interpreted BASIC really becomes noticable when hundreds or
thousands of data points must be calculated to produce a single graph, family of
curves, surface approximations of sclid objects, etc. All of the technigues norm-
ally used for improving the speed of BASIC programs are equally applicable when KGP
is being used.

However KGP itself slows down execution about 25% because each keyword in the
program must be scanned t determine if it 1is one of the new graphics oriented
commands. Nearly all of the speed may be regained by enzbling the abbreviated
command with the GRSHET command. In the abbreviated mode zll commands are preceed-
ed by a] character which makes scanning for graphics commands very fast. Only the
following commands are recognized in the short command mode:

Long ferm Short form Function

AUTEXT Ja Plot text on multiple lines with formatting
CHAR it Plot characters (shapes) in a single row
DRAW] Draw a line from the drawing curscr to a pcint
CLEAR JE Clear the entire Visidle Memory

XFFLG JF Set the coordinate transformation mode
GRACSH]G Display the graphics cursor {crosshairs)
LINE JL Draw an arbitrary line between two endpoints
MOVE M Position the drawing cursor

PETMEM _P Set screen display to PET videc only

TEXCSR T Display the text cursor (underline)

WRPIX Jw Plot a dot at the drawing cursor position

GRSHRT Set abbreviated command mode
Restore full name mode

(]
>

Note that the short form of the commands is always recognized thus they may be
mixed with long form commands and the program will run correctly in long command

mode.

If the execution of a particular non-graphic routine dominates the run time of
a program (such as a Fourier analysis subroutine), one can simply code a GRSHRT
command at the beginning of the routine and a]JX comzand at the end to speed up
that particular routine without having to sacrifice readability of other portions
of the program. If one needs the last few percent of speed capability, KGP itself
may be disabled with a GKILL command and then later re-enabled with the appropriate
SYS command (see section 1).

If plotting time tends to dominate the program rather than computation (such as
plotting from a list of precalculated values), plotting speed may be increased by
turning boundary checking off with the NOCHK command. With boundary checking off,
attempts to plot outside the window or screen boundaries may lead to strange-
looking graphics on the screen. Enough residual checking is maintained however to
prevent writing outside of the Visible Memory address range. Boundary checking may
be restored with tne BNDCHK comman?. See section 5.2 for additional information.

ny
O

-3
n

a

DEFAULTS

In order to simplify use by novices, the Keyword Graphics Package "comes up" in

usable state through the application of defaults. Thus every operating mode,

parameter, etc. has an initial setting that is used in the absence of any commands
tc reset or change it. The theory behind defaults is that a novice user need not
now or worry about a particular parameter until he has a need to use it. Below is
listed the various KGP parameters and their default values:

iz

10.
12
12.

13.

Full name command mode - both full name and abbreviated commands are recog-
nized.

. Graphies scale factor is 20z1.0 which means that the graphic screen is 320

coordinate units wide by 200 coordinate units high.

Graphics X ancd Y offset values are both zero. This means that the origin is at
the lower left corner of the screen and all X and Y values must be positive.

XFFLG set to 0 - coordinate transformation not done regardless of the graphics
scale factor and offset settings.

Nermal display mode - black background with white (green) plotting.

Plotting mode set to O - Pixels are flipped when plotting, thus tiny gaps will
appear where lines crcss.

PET video display - only PET videc is seen, a VISMEM command is required to see
the graphics video.

Full boundary checking is enabled - plotting outside the boundaries will not
show on the screen.

Solid line mode is selecte

[« 7
1

gll lines are shown as solid lines.

Window 0 is selected for use.

The boundaries of all windows are set for left=0, right=313, bottom=0, top=19%.
CEROT is set to zero - zll characters and shapes are right-side-up.

VMPAGE is set to 64 in the 16K version, 96 in the 2LX version, and 144 in the
32K version.

(0%}
o

8. ERROR CODES AND MESSAGES

The KGP can detect when certain values are out of range, and in some cases,
when parameters are missing. However, the majority of errors which occur during
normal programming will be detected by the PET operating system. If only the
Tisible Memory is being displayed when an error is detected by the PET operating
:ystem, the PET error message will not be visible, nor any other direct indication
that the program has stopped. In this case, the PET has not crashed and commands
can still be entered even though they are not visible. The best procedure to
follow when it is thought that an error has occured is to first hit the STOP key to
make sure the program is stopped. Then enter the command "JP" followed by Carriage
Return to bring back the PET display. If the last message is "BREAK IN LINE ...",
then the program was still running when the STOP key was depressed. If an error
had occurred, it will now be visible. If the KGP detects an error, it will switch
back to the PET display before printing the error message.

The error checking in the KGP is limited to checking if all the required param=
eters are present and if certain parameters are within the required range. If a
parameter is missing, the KGP will select PET video and then give a SYNTAX ERROR
message. If a parameter is out of range, the KGP will select PET video and give an
ILLEGAL QUANTITY ERROR messzge. Note that PET BASIC also uses these same messages
for some of the errors it detects and that PET BASIC will not select PET video when
printing the message. - -

X and Y plotting coordinates outside of the current window boundaries is itself
not an error. If boundary checking is on, pecints cutside the window boundaries are
simply not plotted. If boundary checking 1is off, such points will be transformed
such that they may be plotted but in an unexpected location. If an X cr Y coord-
inate is beyond the two byte integer range of -32768 to +32767, then an ILLEGAL
QUANTITY ERROR will be generated as described above.

31

O

MEMORY MAP

The storage allocation utilized by the KGP is designed to minimize any possible
interference with BASIC. Essentially three types of storage are needed for any
6502 program and the KGP is no exception. Memory required to hold the program is
blaced at the very top of available memcry which 1s 2200 (hexadecimal) for 16K
“ET's, L4200 for 24K PET's, and 6200 for 32K PET's. Shape tables are also included
in this memory area. Additional memory 1is required to hold the cursor positions,
scale factors, and offsets for each of the 4 windows. This has been put into the
second cassette buffer so that the addresses are version independent. Thus use of
a second cassette recorder is incompatible with KGP. Finally, 4 bytes in page 0

are required to hold address pointers, The original contents of these bytes are
saved by the KGP when it starts executing and are restcred when it is finished
executing a command. A detailed memory map of the Keyword Graphics Package is

given below:

1Kz 3K Use

3FFF S5FFF TFFF
Shape pointer table
3E00 S5EGOQ TEOQ

Y

Free space for user shape definitions
3CD1 5CD1 7CD1

Predefined shape defiritions (ASCII character set)

NV,

3871 5871 787

Graphics routines

\/

2900 ugoc 6300

BASIC interface routines

\Y%

2200 L200 6200

i

Available storage for user's prograz, Fast Wedge, etec.

0400 0400 oL00
Used by the PET operating system

!

03B8 0383 0388
Variable stcrage used by the graphics routines

y

0340 0340 0340
Used by the PET operating system

\

0064 0064 006 A

Variable storage used by the graphics routines
0066 0066 006

o

VV

Used by the PET operating system
0000 0000 0000

10, . LISTING OF KGPDEMO DEMONSTRATION PROGRAM

1 REM MTU GRAPHICS EXAMPLES

200 REM DEMONSTRATION OF POINT PLOT

205 REM PLOT A CIRCLE IN DEAD CENTER OF SCREEN USING 100 POINTS
210 CLEAR:REM CLEAR SCREEN

215 VISMEM:REM LOOK AT VISIBLE MEMORY

220 GMODE 1:REM PLOT ALL THE POINTS

230 FOF I=0 TO 100

2U0 A=£.28318%*1/100

250 MOVE 159%COS(A)+160.5 , Q9*SIN{A)+100.5
270 WRPIX:REM WRITE THE POINT

280 NEXT I

250 GOSUB300C

300 REM DEMONSTRATION OF VECTOR PLOT

31C REM SET MODES - ON, OFF, FLIP, FLIP

320 GM(1)=1:GM(2)=2:GM(3)=0:GM(4)=0

330 REM PLOT IN ALL 4 MODES

340 FOR MD=1 TO 4

345 REM CLEAR THE SCREEN BEFORE PLOTS 1 AND 3
350 IF(MD=1)OR(MD=3)THEN E

360 TM=GM(MD):GMODE 1

365 AUTEXT 19;"GRAPEICS MODE";32;20;157;STR$(TM)
370 GMODE GM(MD)

380 FP=1:REM SET FIRST POINT FLAG

400 FOR I=0 TO 31

410 A=13%I%5,2831828/31

420 X=159#%C0S(A}+160,5

430 Y= 99%SIN(A)+100.5

LUQ IF FP=! THEN MOVE X,Y:FPz0:GOTOL70O:REM MOVE FOR FIAST POINT
LS50 DRAW X,Y

470 NEXT I

480 GOSUBRSC20

490 NEXT MD

600 REM DEMONSTRATION OF AXIS PLOT AND LAREL
610 CLEAR:GMCDE 1

620 REM INSERT Y AXIS LABELLING FIRST

630 DS=9:REM 9 DOTS BETWEEN LABELS

bu0 FOR Y=-10 TO 10 STEP 2

650 REM REPOSITION TEXT CURSOR

660 P=Y+10:REM P GOES FROM C TO 20

670 MOVE 0,P#DS+12

680 CHAR STR$(Y/10):REM PRINT THE LABEL

690 NEXT Y

70C REM PRINT X AXIS CAPTION

710 MOVE LG®*6,90+412:CHAR "TIME"

730 REM PRINT X AXIS CAPTION AND FIGURE CAPTION
TLO MOVE 0,0 :CHAR "AMPLITUDE WAVEFORM OF GREAT DIASPON CH 16FT"
800 REM PLOT X AND Y AXES

820 LINE 20,105,284,105:REM HOR AXIS

840 LINE 20,11,20,199:REM VERT AXIS

300 REM PLOT TIC MARKS ON Y AXIS

910 FOR Y=-1C TO 10 STEP 2

920 P=Y+10:REM P GOES FROM O TO 20

930 Y1=P#*D5+12+3

940 LINE 18,Y1,20,Y1

950 NEXT Y

1000 REM PLOT THE WAVEFORM USING VECTCRS3

1010 FP=1

1020
1030
1040
1050
1060
1070
1080
1090
1100
1130
1140
2000
2005
2010
2020
2030
2035
2040
2045
2050
2055
2060
2065
2066
2100
2110
2120
2130
2140
2150
2160
2170
2180
2200
3000
3010
3020
3030
3040
3050
3060
3065
3070
3075
3080
3050
3100
3110
3120
3130
3140
3200
3210

L) Ll Lo L L) Lo W
[ASIN AT eI AU A G LG V)

mw o
OO0 OO O0OC

o -3 o

XF=270/(2%3.14159):REM X SCALE FACTOR

YF=50:REM Y SCALE FACTOR

FOR X=0 TO 2%3.14159 STEP 4¥%3 14159/270
Y=SIN(X)+,49%SIN(2#X+3.9)+.3#SIN(3*X+5.81)

Y=Y+, 2U®SIN(U®X+3 .8)+, 1B¥SIN(5*X+.97)

Y=Y+, 128SIN(O6®)X+l 3)+ OURSIN(T#X+3,54)

Y=Y+, OT#SIN(E#X+,.87)+.03%5IN(9%#X+5.3)

IF FP=1 THEN MOVE 20.5+XF#X,105.5+YF#Y:FP=0:GOTO 1130
DRAW 20.5+XF*X,105.5+YF*Y

NEXT X

GOSUB90CO

REM EXAMPLE OF USING WINDOWS

REM SETUP THE WINDOWS

RVSDSP:CLEAR:NRMDSP

W$="WINDOW" :GMODE 1

SETWIN 0,8,8,223,170

YINDOW O:WCLEAR:CHAR W$;STR$(0)

SETWIN 1,240,9,311,90
WINDOW 1:WCLEAR:CHAR W$;STR$(
SETWIN 2,240,100,211,171
WINDOW 2:WCLEAR:CHAR W$;STR$(2)

SETWIN 3,24,180,295,195

WINDOW 3:WCLEAR:CHAR W$;STRE(3)

GOSUB 9000

REM INITIALIZE ROUND-ROBEIN USE OF THZ WINDOWS
S0=1:51=1:82=1:83=1:C1=0:C2=0:.3=0

D3g=" THIS DISPLAY IS BROUGHT TC YQU BY"
D3$=D3%+" THE MTU KEYWORD GRAPHICS PACKAGE "
I3=6

12=£5:WINDOW 2:WCLEAR:MOVE 309,108
I1=32:WINDOW 1:WCLEAR

C=6.28318/50:10=0

WINDOW O:MOVE 115,8%:DS=0

REM BEGIN ROUND-ROBEIN USE OF THE WINDOWS
IF S0=0 GOTZ 3100

WINDOW 0:REM DRAW LINES

GMODE 1

RDXY X,Y

GRSHRT:DS=DS+1

DR=DR+1:IF DR=z4 THEN DR:=0

IF DR=0 THEX J]D X+DS,Y:30T0 3080

IF DR=1 THEN D X,Y+DS:GOTO 3080

IF DR=2 THEN]D X-DS,Y:G0TO 3080

IF DR=3 THEN]D X,Y¥-DS

I10=I0+1:IF I0=100 THEN 50=0

JX

IF S1=0 GOTO 3200

WINDCW 1:REM PRINT CHARACTER SET

AUTEXT I1:I1=I1+1

IF I1=12T7 THEN I1=32:C1=C141

IF C1=2 THEN S1=0

IF S2=0 GOTO 3400

WINDOW 2:REM PRINT UPSIDE-DOW

CHROT 2:REM SET FOR UPSIDE DOWN

EDXY X,Y

IF X<zu4b6 THEN GOSUB 330C

CHAR Iz:I2=1z2+1

-y

IF c2=8 THEN &
CHROT G:REM RE

34

GOTO 340G
REM TEST FOR RETURN AND SCROLL

IF ¥Y>158 THEN Y=Y-10:SCROLL 240,100,240,110,311,171

MOVE 308,Y+10

RETURN

IF S3=0 THEN GOTO 3480

WINDOW 3:REM HORIZONTAL SCROLLING
SCROLL 24,180,32,180,295,195

MOVE 288,185

CHAR MID$(D3¢,I3,1)

I13=I3+1

IF I3=LEN(D3$)+1 THEN I3=1:C3=C3+!
IF C3=2 THEN S3=0

IF S0=1 QR S1=1 OR S2=1 OR S3=1 THEN GOTO 30

GOSUB 2000
REM DO CHECKERBOARD
NRMDSP:CLEAR
GMODE 1
FOR I=0 TO 313 STEP 4O
FOR J=0 TO 189 STEP 25
FLPDSP
O SCLEAR I,J,I+39,J+24
NEXT J
LPDSP
NEXT I
REM DO THE ROAMING "x*
NRMDSP :GMODE 0
SETWIN 0,0,0,319,199:WINDOW O
MOVE 160,100
MD=ASC("3")+128:REM MOVE DIRECTION
C=ASC("X"):BS=157 :REM BACKSPACE
CHAR C
REM MAIN LOOP
CHAR BS:RDPIX PX
IF PX=255 THEN GOSUB 4300
CHAR C:CHAR BS:REM ERASE
CHAR MD;MD;MD;MD;MD;MD:REM MOVE
CEAR C:REM DRAW AGAIN
GET DR$

IF DR$>"0" AND DR$<="9" THEN MD=ASC(DR$)+128

IF DR$<>™0"™ THEN GOTO 4180
PVMEM:GOSUB 9000: P:END
REM END OF DEMO

RDXY X,Y:REM AT BOARDER, CHANGE DIRECTION

IF X>=0 GOTD 4340

IF MD<=133 THEN MD=MD+2:RETURN
MD=182:RETURN

IF X<320 GOTO 4370

IF MD>=175 THEN MD=MD-2:RETURN
MD=180:RETURN

IF Y>=0 GOTO 4400

IF MDX=179 THEN MD=MD+5:RETURN
MD=184 : RETURN

IF Y<200 THEN RETURN

IF MD>=183 THEN MD=MD-6:RETURN
MD=178 :RETURN

REM WAIT FOR A FEW SECONDS
TJ=TI+100

IF TI<TJ THEN 9020

RETURN

TN
S

w
wn

112

SPECIAL FUNCTION CHARACTERS

The following function characters are recognized in the character strings given
to the CHAR command or the AUTEXT command:

ASCII CODE

PET KEY (DECIMAL) DEFINITION

DEL 20 Erase the character at the current character position,

Up-arrow 45 Move cursor up one line.

Down-arrow 17 Move cursor down one line.

Right-arrow 29 Move cursor right one character position.

Left-arrow 157 Move cursor left one character position.

Shift-1 - 177~ Move one dot position in direction the digit is froz S.

Shift-9 185

Shift-D 19€ Add one to CHSCALE, i.e. double the current charazter
size

Shift-E 197 Subtract one from CHSCALE, i.e. halve the current char-
acter size.

Shift-F 138 Add one to CHROT, i.e. rotate orientation U5 degrees
counterclockwisea.

Shift-G 139 Subtract one from CHROT, i.e. rotate orientation 43
degrees clockwise,

Shift-§ 164 Draw the contents of BASIC string variable GR$ as a de’-
inition, i.e. contains vector bytes, etc. The defini-
tion contained in GR$ MUST end in a zero byte!

CLR 147 AUTEXT only. Clears the region specified by the current
boundaries, and then homes the drawing cursor ccord-
inates.

HOME 19 AUTEXT only. Homes the drawing cursor coordinates.

RETURN 13 AUTEXT only. Performs a carriage return fcllowed by =

line feed.

11.3

SECT

CHARACTER DEFINITION INSTRUCTIONS

The following instructions are recognized inside of a shape definition:

ION CODE QPERANDS DESCRIPTION
239 A,B Add A-128 to X cursor position and add B-128 to Y
cursor position
223 A,B Draw a line from the current cursor position to
A-128+Xcursor,B-128+Ycursor then update the cursor
position.

b7 ID Draw the shape specified by the ID at the current
cursor position. The shape itself may wuse a 47
instruction.

63 ID,ID,...,0 Draw the series of shapes specified by the ID's at
the current cursor position. The shapes may them-
selves use a 53 or 47 instruction.

95 val Add val-128 to the present value of CHROT. Result
should lie in the range of 0-3.

175 val Add val-128 to the present value of CHSCALE.

0 End of shape definition

Legal The vector byte is simply the sum of the three

Vector numbers calculated according to the chart below:

Bytes

DIRECTION NUMBER LENGTH NUMBER MCVE/DRAW NUMBER
48 32 16 Specifies length of Is 0 for move.
move or draw. This Is 128 for draw.
number may be from
&4 0 0 to 14,
80 96 112

COMMANDS WHICH LEAVE THE DRAWING CURSOR UNDEFINED

SCLEAR
CFLIP
SETWIN
SCROLL
CSETUF
XFFLG
OFFSET if XFFLG is 1

43

12. APPENDIX B

This section describes appropriate corrective action when difficulty is exper-
ienced due to failure to follow instructions, etc,.

1251 WHAT TO DO IF THE KGP WON'T LINK IN

It is important to note that the first time the initializing SYS is executed,
the KGP will link itself to BASIC and then set a status byte before performing the
necessary initialization. If another initializing SYS command is executed, this
status byte is checked, and if set, only the initialization is performed. This is
necessary to allow the KGP to link in between another package such as the Progran-
mer's Toolkit (tm). However, if the KGP link is destroyed after this status bdit is
set, the SYS command won't relink the KGP. This would happen if you executed the
Toolkit's SYS command after the KGP was linked in rather than before as the
instructions in section 2.6 indicate. You will also encounter this problem if you
made your backup copy while the KGP was linked in rather than before as described
in section 2.7. At this pcint the the quickest way to solve the problem 1is to
reset the status byte with one of the fcllowing POKE commands:

16K Version: POKE 256%34+18,0
24K Version: POKE 256%66+18,0
32K Version: POKE 256%98+18,0

Ly

